
8086 Assembler

1

8086 Assembler

It is assumed that you have some knowledge about number representation

(HEX/BIN), if not it is highly recommended to study Numbering Systems
Tutorial before you proceed.

What is an assembly language?

Assembly language is a low-level programming language. You need

to get some knowledge about computer structure to understand anything.

The simple computer model as I see it:

The system bus (shown in yellow) connects the various

components of a computer.
The CPU is the heart of the computer, most of computations occur

inside the CPU.
RAM is a place to where the programs are loaded to be

executed.

8086 Assembler

2

Inside the CPU

GENERAL PURPOSE REGISTERS

8086 CPU has 8 general purpose registers, each register has its own
name:

• AX - the accumulator register (divided into AH / AL).
• BX - the base address register (divided into BH / BL).

• CX - the count register (divided into CH / CL).
• DX - the data register (divided into DH / DL).
• SI - source index register.

• DI - destination index register.
• BP - base pointer.

• SP - stack pointer.

Despite the name of a register, it's the programmer who determines

the usage for each general-purpose register. The main purpose of a register
is to keep a number (variable). The size of the above registers is
16 bit.

4 general purpose registers (AX, BX, CX, DX) are made of two separates

8-bit registers, for example if AX= 0011000000111001b, then

AH=00110000b and AL=00111001b. Therefore, when you modify any
of the 8-bit registers 16-bit register is also updated, and vice versa. The

same is for the other 3 registers, "H" is for high, and "L" is for low part.
Because registers are located inside the CPU, they are much faster

than memory. Accessing a memory location requires the use of a system

bus, so it takes much longer. Accessing data in a register usually takes no
time. Therefore, you should try to keep variables in the registers. Register

sets are very small and most registers have special purposes which limit
their use as variables, but they are still an excellent place to store temporary

data of calculations.

8086 Assembler

3

SEGMENT REGISTERS

• CS - points at the segment containing the current program.
• DS - generally points at segment where variables are defined.

• ES - extra segment register, it's up to a coder to define its usage.
• SS - points at the segment containing the stack.

Although it is possible to store any data in the segment registers, this

is never a good idea. The segment registers have a very special purpose -
pointing at accessible blocks of memory.

Segment registers work together with general purpose register to access

any memory value. For example, if we would like to access memory at the
physical address 12345h (hexadecimal), we should set the DS = 1230h

and SI = 0045h. This is good, since this way we can access much more

memory than with a single register that is limited to 16-bit values.

CPU makes a calculation of physical address by multiplying the segment

register by 10h and adding general purpose register to it (1230h * 10h +

45h = 12345h):

The address formed with 2 registers is called an effective address.

By default, BX, SI and DI registers work with DS segment register, BP
and SP work with SS segment register. Other

general-purpose registers cannot form an effective address! Also,
although BX can form an effective address, BH and BL cannot!

SPECIAL PURPOSE REGISTERS

• IP - the instruction pointer.

• Flags Register - determines the current state of the processor.

IP register always works together with CS segment register, and it

points to current executing instruction.
Flags Register is modified automatically by CPU after mathematical

operations, this allows to determine the type of the result, and to determine
conditions to transfer control to other parts of the program. Generally, you

cannot access these registers directly.

8086 Assembler

4

Memory Access
To access memory we can use these four registers: BX, SI, DI, BP.

Combining these registers inside [] symbols, we can get different memory
locations. For example, [BX], [BX+SI+7], variable, etc...

The value in segment register (CS, DS, SS, ES) is called a "segment",
and the value in purpose register (BX, SI, DI, BP) is called an "offset". When

DS contains value 1234h and SI contains the value 7890h it can be also
recorded as 1234:7890. The physical address will be 1234h * 10h + 7890h

= 19BD0h.

MOV instruction

• Copies the second operand (source) to the first operand
(destination).

• The source operand can be an immediate value, general-purpose
register or memory location.

• The destination register can be a general-purpose register, or
memory location.

• Both operands must be the same size, which can be a byte or a
word.

These types of operands are supported:

MOV REG, memory

MOV memory, REG

MOV REG, REG

MOV memory, immediate

MOV REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

8086 Assembler

5

The MOV instruction cannot be used to set the value of the CS and

IP registers.

You can copy & paste the above program to editor, and press [RUN]

button.

As you may guess, ";" is used for comments, anything after ";" symbol
is ignored by compiler. You should see something like that when program

finishes:

(this is how it looks in emu8086 microprosessor emulator).

Actually the above program writes directly to video memory, so you
may see that MOV is a very powerful instruction.

For segment registers only these types of MOV are supported:

MOV SREG, memory

MOV memory, SREG

MOV REG, SREG

MOV SREG, REG

SREG: DS, ES, SS, and only as second operand: CS.

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

Here is a short program that demonstrates the use of MOV instruction:

ORG 100h ; directive required for a COM program.

MOV AX, 0B800h ; set AX to hexadecimal value of B800h.

MOV DS, AX ; copy value of AX to DS.

MOV CL, 'A' ; set CL to ASCII code of 'A', it is 41h.

MOV CH, 01011111b ; set CH to binary value.

MOV BX, 15Eh ; set BX to 15Eh.

MOV [BX], CX ; copy contents of CX to memory at B800:015E

RET ; returns to operating system.

8086 Assembler

6

Variables

Variable is a memory location. For a programmer it is much easier
to have some value be kept in a variable named "var1" than at the address

5A73:235B, especially when you have 10 or more variables.

Our compiler supports two types of variables: BYTE and WORD.

As you probably know from this section of this tutorial, MOV instruction is
used to copy values from source to destination.

Let's see another example with MOV instruction:

Syntax for a variable declaration:

name DB value

name DW value

DB - stays for Define Byte.

DW - stays for Define Word.

name - can be any letter or digit combination, though it should start with a letter. It's

possible to declare unnamed variables by not specifying the name (this variable will have

an address but no name).

value - can be any numeric value in any supported numbering system (hexadecimal,

binary, or decimal), or "?" symbol for variables that are not initialized.

ORG 100h

MOV AL, var1

MOV BX, var2

RET ; stops the program.

var1 DB 7

var2 DW 1234h

8086 Assembler

7

ORG 100h is a compiler directive (it says to compiler how to handle
the source code). This directive is very important when you work with

variables. It says to compiler that the executable file will be loaded at the
offset of 100h (256 bytes), so compiler should calculate the correct address

for all variables when it replaces the variable names with their offsets.

Directives are never converted to any real machine code.
Why executable file is loaded at offset of 100h? The operating

system keeps some data about the program in the first 256 bytes of the CS
(code segment), such as command line parameters and etc.

8086 Assembler

8

Arrays

Arrays can be seen as chains of variables. A text string is an example

of a byte array, each character is presented as an ASCII code value

(0..255).

Here are some array definition examples:

a DB 48h, 65h, 6Ch, 6Ch, 6Fh, 00h

b DB 'Hello', 0

b is an exact copy of the a array, when compiler sees a string inside quotes
it automatically converts it to set of bytes. This chart shows a part of the

memory where these arrays are declared:

You can access the value of any element in array using square

brackets, for example:

MOV AL, a[3]

You can also use any of the memory index registers BX, SI, DI, BP,

for example:

MOV SI, 3

MOV AL, a[SI]

If you need to declare a large array you can use DUP operator.

The syntax for DUP:

number DUP (value(s))

number - number of duplicate to make (any constant value).

value - expression that DUP will duplicate.

for example:

c DB 5 DUP(9)

is an alternative way of declaring:

c DB 9, 9, 9, 9, 9

8086 Assembler

9

one more example:

d DB 5 DUP(1, 2)

is an alternative way of declaring:

d DB 1, 2, 1, 2, 1, 2, 1, 2, 1, 2

Of course, you can use DW instead of DB if it's required to keep
values larger then 255, or smaller then -128. DW cannot be used to declare

strings!
The expansion of DUP operand should not be over 1020 characters!

(the expansion of last example is 13 chars), if you need to declare huge
array divide declaration it in two lines (you will get a single huge array in

the memory).

Getting the Address of a Variable

There is LEA (Load Effective Address) instruction and alternative
OFFSET operator. Both OFFSET and LEA can be used to get the offset

address of the variable. LEA is more powerful because it also allows you to

get the address of an indexed variable. Getting the address of the variable
can be very useful in some situations, for example when you need to pass

parameters to a procedure.

Here is first example:

ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

LEA BX, VAR1 ; get address of VAR1 in BX.

MOV [BX], 44h ; modify the contents of VAR1.

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

RET

VAR1 DB 22h

8086 Assembler

10

Here is another example, that uses OFFSET instead of LEA:

Both examples have the same functionality. These lines:

LEA BX, VAR1

MOV BX, OFFSET VAR1

are even compiled into the same machine code:

MOV BX, num

num is a 16 bit value of the variable offset.

Please note that only these registers can be used inside square

brackets (as memory pointers): BX, SI, DI, BP!

ORG 100h

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

MOV BX, OFFSET VAR1 ; get address of VAR1 in BX.

MOV [BX], 44h ; modify the contents of VAR1.

MOV AL, VAR1 ; check value of VAR1 by moving it to AL.

RET

VAR1 DB 22h

8086 Assembler

11

Arithmetic and Logic Instructions

Most Arithmetic and Logic Instructions affect the processor status

register (or Flags)

As you may see there are 16 bits in this register, each bit is called a

flag and can take a value of 1 or 0.

• Carry Flag (CF) - this flag is set to 1 when there is an unsigned
overflow. For example when you add bytes 255+1 (result is not in

range 0...255). When there is no overflow this flag is set to 0.

• Zero Flag (ZF) - set to 1 when result is zero. For none zero result

this flag is set to 0.

• Sign Flag (SF) - set to 1 when result is negative. When result is

positive it is set to 0. Actually this flag take the value of the most
significant bit.

• Overflow Flag (OF) - set to 1 when there is a signed overflow.
For example, when you add bytes 100 + 50 (result is not in range -

128...127).

• Parity Flag (PF) - this flag is set to 1 when there is even number
of one bits in result, and to 0 when there is odd number of one bits.

Even if result is a word only 8 low bits are analyzed!

• Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow
for low nibble (4 bits).

• Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts
to interrupts from external devices.

• Direction Flag (DF) - this flag is used by some instructions to

process data chains, when this flag is set to 0 - the processing is done
forward, when this flag is set to 1 the processing is done backward.

8086 Assembler

12

There are 3 groups of instructions.

First group: ADD, SUB, CMP

These types of operands are supported:

REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

After operation between operands, result is always stored in first
operand. CMP instruction affects flags only and do not store a result (these

instruction are used to make decisions during program execution).
These instructions affect these flags only:

CF, ZF, SF, OF, PF, AF.

• ADD - add second operand to first.
• SUB - Subtract second operand to first.
• CMP - Subtract second operand from first for flags only.

8086 Assembler

13

Second group: MUL, DIV

These types of operands are supported:

REG

memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

MUL instruction affect these flags only:

CF, OF

When the result is over operand size these flags are set to 1, when
result fits in operand size these flags are set to 0.

• MUL :

when operand is a byte:
AX = AL * operand.

when operand is a word:

(DX AX) = AX * operand.

• DIV :

when operand is a byte:
AL = AX / operand

AH = remainder (modulus). .

when operand is a word:
AX = (DX AX) / operand

DX = remainder (modulus). .

Third group: INC, DEC

These types of operands are supported:

REG

memory

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

memory: [BX], [BX+SI+7], variable, etc...

INC, DEC instructions affect these flags only: ZF, SF, OF, PF, AF.

8086 Assembler

14

back: JMP stop ; go to 'stop'.

calc:

ADD AX, BX ; add BX to AX.

JMP back ; go 'back'.

stop:

RET ; return to operating system.

Program Flow Control

Controlling the program flow is a very important thing, this is where

your program can make decisions according to certain conditions.

• Unconditional Jumps

The basic instruction that transfers control to another point in the

program is JMP. The basic syntax of JMP instruction:

JMP label

To declare a label in your program, just type its name and add ":" to

the end, label can be any character combination, but it cannot start with a
number, for example here are 3 legal label definitions:

label1:

label2:

a:

Label can be declared on a separate line or before any other

instruction, for example:

x1:

MOV AX, 1

x2: MOV AX, 2

Here is an example of JMP instruction:

ORG 100h

MOV AX, 5 ; set AX to 5.

MOV BX, 2 ; set BX to 2.

JMP calc ; go to 'calc'.

8086 Assembler

15

As you can see from this example JMP is able to transfer control both

forward and backward. It can jump anywhere in current code segment
(65,535 bytes).

• Short Conditional Jumps

Unlike JMP instruction that does an unconditional jump, there are

instructions that do a conditional jump (jump only when some conditions
are in act).

Jump instructions

Instruction

Description

Condition
Opposite

Instruction

JE , JZ
Jump if Equal (=).

Jump if Zero.

ZF = 1

JNE, JNZ

JNE , JNZ
Jump if Not Equal (<>).

Jump if Not Zero.

ZF = 0

JE, JZ

JG , JNLE

Jump if Greater (>).

Jump if Not Less or Equal (not <=).

ZF = 0

and

SF = OF

JNG, JLE

JL , JNGE

Jump if Less (<).

Jump if Not Greater or Equal (not

>=).

SF <> OF

JNL, JGE

JGE , JNL
Jump if Greater or Equal (>=).

Jump if Not Less (not <).

SF = OF

JNGE, JL

JLE , JNG

Jump if Less or Equal (<=). Jump

if Not Greater (not >).

ZF = 1

or

SF <> OF

JNLE, JG

<> - sign means not equal.

8086 Assembler

16

Generally, when it is required to compare numeric values CMP

instruction is used (it does the same as SUB (subtract) instruction, but does
not keep the result, just affects the flags).

The logic is very simple, for example:

it's required to compare 5 and 2,

5 - 2 = 3

the result is not zero (Zero Flag is set to 0).

Another example:

it's required to compare 7 and 7,

7 - 7 = 0

The result is zero! (Zero Flag is set to 1 and JZ or JE will do the jump).

Here is an example of CMP instruction and conditional jump:

Try the above example with different numbers for AL and BL, open

flags by clicking on [FLAGS] button, use [Single Step] and see what
happens.

ORG 100h

MOV AL, 25 ; set AL to 25.

MOV BL, 10 ; set BL to 10.

CMP AL, BL ; compare AL - BL.

JE equal ; jump if AL = BL (ZF = 1).

MOV CX, 0 ; if it gets here, then AL <> BL,

JMP stop ; so MOV 0, and jump to stop.

equal: ; if gets here,

MOV CX, 1 ; then AL = BL, so MOV 1.

stop:

RET ; gets here no matter what.

8086 Assembler

17

The Stack

Stack is an area of memory for keeping temporary data. Stack is used
by CALL instruction to keep return address for procedure, RET instruction

gets this value from the stack and returns to that offset. Quite the same
thing happens when INT instruction calls an interrupt, it stores in stack flag

register, code segment and offset.

We can also use the stack to keep any other data, there
are two instructions that work with the stack:

PUSH - stores 16-bit value in the stack.

POP - gets 16-bit value from the stack.

The stack uses LIFO (Last In First Out) algorithm, this means that if

we push these values one by one into the stack: 1, 2, 3, 4, 5

Syntax for PUSH instruction:

PUSH REG

PUSH SREG

PUSH memory

PUSH immediate

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, CS.

memory: [BX], [BX+SI+7], 16 bit variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

Syntax for POP instruction:

POP REG

POP SREG

POP memory

REG: AX, BX, CX, DX, DI, SI, BP, SP.

SREG: DS, ES, SS, (except CS).

memory: [BX], [BX+SI+7], 16 bit variable, etc...

8086 Assembler

18

the first value that we will get on pop will be 5, then 4, 3, 2, and only

then 1.

It is very important to do equal number of PUSHs and POPs,

otherwise the stack may be corrupted, and it will be impossible to return to
operating system. As you already know we use RET instruction to return

to the operating system, so when a program starts there is a return address
in stack (generally it's 0000h).

PUSH and POP instruction are especially useful because we don't have

too many registers to operate with, so here is a trick:

• Store original value of the register in stack (using PUSH).

• Use the register for any purpose.

• Restore the original value of the register from stack (using POP).

Here is an example:

ORG 100h

MOV

PUSH

AX, 1234h

AX ; store value of AX in stack.

MOV AX, 5678h ; modify the AX value.

POP AX ; restore the original value of AX.

RET

8086 Assembler

19

Another use of the stack is for exchanging the values, here is an
example:

The exchange happens because stack uses LIFO (Last In First Out)

algorithm, so when we push 1212h and then 3434h, on pop we will first
get 3434h and only after it 1212h.

The stack memory area is set by SS (Stack Segment) register, and SP

(Stack Pointer) register. Generally, operating system sets values of these
registers on program start.

"PUSH source" instruction does the following:

• Subtract 2 from SP register.

• Write the value of source to the address SS: SP.

 "POP destination" instruction does the following:

• Write the value at the address SS: SP to destination.

• Add 2 to SP register.

The current address pointed by SS: SP is called the top of the stack.

For COM files stack segment is generally the code segment, and stack
pointer is set to value of 0FFFEh. At the address SS:0FFFEh stored a return

address for RET instruction that is executed in the end of the program.
In emu8086 Microprocessor Emulator you can visually see the stack

operation by clicking on [Stack] button on emulator window. The top of
the stack is marked with "<" sign.

ORG 100h

MOV AX, 1212h ; store 1212h in AX.

MOV BX, 3434h ; store 3434h in BX

PUSH AX

PUSH BX

; store value of AX in stack.

; store value of BX in stack.

POP AX

POP BX

; set AX to original value of BX.

; set BX to original value of AX.

RET

8086 Assembler

20

Interrupts

Interrupts can be seen as several functions. These functions make the
programming much easier, instead of writing a code to print a character

you can simply call the interrupt, and it will do everything for you. There
are also interrupt functions that work with disk drive and other hardware.

We call such functions software interrupts.
Interrupts are also triggered by different hardware; these are called

hardware interrupts. Currently we are interested in software
interruptions only.

To make a software interrupt there is an INT instruction, it has
very simple syntax:

INT value
where value can be a number between 0 to 255 (or 0 to 0FFh), generally

we will use hexadecimal numbers.

You may think that there are only 256 functions, but that is not correct.

Each interrupt may have sub-functions.

To specify a sub-function AH register should be set before calling
interrupt. Each interrupt may have up to 256 sub-functions (so we get

256 * 256 = 65536 functions). In general AH register is used, but
sometimes other registers may be in use. Generally other registers are used

to pass parameters and data to sub-functions. The following example uses
INT 10h sub-function 0Eh to type a "Hello!" message. This function displays

a character on the screen, advancing the cursor and scrolling the screen as
necessary.

ORG 100h .

; The sub-function that we are using
; does not modify the AH register on

; return, so we may set it only once.

MOV AH, 0Eh ; select sub-function.

; INT 10h / 0Eh sub-function

; receives an ASCII code of the

; character that will be printed

; in AL register.

MOV AL, 'H' ; ASCII code: 72

INT 10h ; print it!

MOV AL, 'e' ; ASCII code: 101

INT 10h ; print it!

8086 Assembler

21

MOV AL, 'l' ; ASCII code: 108
INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108

INT 10h ; print it!

MOV AL, 'o' ; ASCII code: 111

INT 10h ; print it!

MOV AL, '!' ; ASCII code: 33

INT 10h ; print it!

RET ; returns to operating system.

